

Manual de los siguientes programas:

- GEAR -1
- GEAR -1 INTERNI
- GEAR -1 SINGOLO

(Par de engranajes cilíndricos)(Par de engranajes, 1 internos)(Engranaje único arbitraria)

Indice

Presentaciòn	3
Posibilidades del programa	4
Menu Calculs: Editor datos	8
Menu Càlculos: Editor equilibrado del deslizamiento especifico	13
Menu Càlculos:Resultados equilibrado del deslizamiento especifico	14
Menu Càlculos: Cálculo medida rodillo	15
Menu Càlculos: Modifica n° dientes de medición	
Menu Càlculos: Espesor cordal en el diàmetro	
Menu Càlculos: Medida Rodillos Cremallera	
Menu Càlculos: Cálculo tiempo de tallado con fresa madre	
Menu Càlculos: Cálculo tiempo de tallado con herramienta circular	22
Menu Càlculos: Caso (A) Entreeje fijo: Cálculo hélice sin corrección	23
Menu Càlculos: Caso (B) Entreeje fijo: Datos Xm de una rueda	24
Menu Càlculos: Caso (C) Entreeje fijo: Equilibrado del deslizamiento especifico	25
Menu: Dibuje perfil	
Menu Dibuje perfil : Cuadro de animación	
Menu Dibuje perfil: dibujar piñón	
Menu Visualizar: Lista de coordenadas	
Menu Visualizar: Coordenadas Herramienta De Forma	
Menu Visualizar: Lista espesor diente	
Menu Visualizar: Resultados	
Menu Visualizar: Diagrama de deslizamiento	
Menu Visualizar: Factor de forma Yf	
Menu Visualizar: Juego entre los dientes	
Menu Dinàmica	
Menu configuraciòn:	
Menu configuraciòn: Ajustes de impresión	
Menu Ayuda	
Programa GEAR-1 INTERNI	41
Menu Visualizar: Diagrama de deslizamiento	
Menu Visualizar: Factor de forma Yf	
Programa GEAR-1 SINGOLO	
Menu topping	
Menu Càlculos: Càlcul bruñidos	

Presentaciòn

El programa càlcula los datos geométricos de un par de engranajes cilíndricos con ejes paralelos

con el diente derecho o helicoidal.

El programa "Gear-1" está diseñado para fabricantes de engranajes y las oficinas técnicas del diseño.

Se puede entonces presentar el menú de cálculo que no afecta a los fabricantes de engranajes y viceversa.

Los datos registrados por "Gear-1" pueden ser leídos por el programa "diferencial" (hecho para los fabricantes de engranajes) que se encarga de càlcular un conjunto de cuatro marchas para el tallado de engranajes diferenciales o rectificado, etc.

La característica peculiar del programa es para ser fácil de usar, pero para dar a todos los resultados que se necesitan.

Otra característica importante es trazar en inequívoca el perfil de diente que se genera por la generatriz.

En consecuencia, es como decir que simula exactamente el proceso de la dentición, eliminando las dudas del fabricante cuando éste está en la mano un dibujo claro o mal dimensionado.

Antes Dentare un engranaje y el riesgo de tener que hacer de nuevo, el programa le mostrará un perfil real, que será ejecutado en la máquina de tallado de engranajes.

Capacidad de programa:

Módulo normal:	da 0.1 a 100
N. dientes:	da 2 a 4000
Ángulo de presión:	da 10° a 45°
Ángulo hélice:	da 0 a 60°

Corrección en el radio primitivo Xm:

max: +(2 xMn)

min: se debe configurar, pero está marcada por el programa.

Si el valor es tan baja como para no obtener un ángulo de presión de funcionamiento aceptable, que se señaliza y no es aceptada.

Posibilidades del programa

El programa calcula:

- Los datos geométricos
- Cuota Wildhaber
- Cuota rodillos
- Espesor del diente circular, cordal de cualquier diámetro
- Cuota rodillos cremallera
- Paso de la hélice
- Diámetro de la base, la evolución de inicio útil, perfil activo, bajo la talla, etc.

El programa muestra:

- El perfil cremallera generatriz
- El perfil de los dientes de la rueda dentada
- El perfil de los dientes del engranaje del piñón con el generador de estantell profilo
- El perfil de los dientes de engranaje de piñón con los de la corona
- Una lista de coordenadas (con aproximadamente 45 puntos) del diente o del perfil de Hueco entre dientes

El programa realiza la animación y una función de zoom:

- El perfil de los dientes de la rueda dentada 1
- El perfil de los dientes de la rueda dentada 2
- El perfil de los dientes del engranaje 1 con la cremallera de generación o normal
- El perfil de los dientes del engranaje 2 con la cremallera de generación o normal
- El perfil de los dientes del engranaje 1 con engranaje 2

El programa imprime con escala :

- El perfil de la cremallera de generación
- El perfil de los dientes de la rueda dentada 1
- El perfil de los dientes de la rueda dentada 2
- El perfil de los dientes del engranaje del piñón con el generador de estantell profilo
- El perfil de los dientes de engranaje de piñón con los de la corona
- Una lista de coordenadas (con aproximadamente 45 puntos) del diente o del perfil de Hueco entre dientes
- Exportación de un file DXF del perfil de los dientes para el uso de sistemas CAD.
- Todos los datos geométrica calculada

El programa guarda:

- Los principales datos y vuelve a calcular cuando se abre
- Para cada tipo de cálculo: Un archivo con todos los datos en formato de texto

Menu archivio

🐁 Gear Calculation	2				
Archivo Calculos	Dibujo del perfi	l Dinámica	Visualizar	Configuración	Ayuda
Nuevo					
Abrir					
Guardar como					
Exportar DXF					
Archivos recier	ntes 🕨				
Salir					

Menu càlculos

🗞 Gear C	alculation	2				
Archivo	Calculos	Dibujo del perfil	Dinámica	Visualizar	Configuraci	ón Ayuda
	Edit	or datos				
	Edit	or datos: Equilibrad	o del desliza	miento		
	Edit	or datos: Entreeje fij	о		→	
	Med	lida rodillos				
	Mod	lificar el N° dientes	a medir			
	Espe	sor cordal en el diá	metro			
	Med	lida cremallera con	rodillo			
	Cálc	ulo tiempo de talla	do con fresa	madre		
	Cálo	ulo tiempo de talla	do con crem	nallera		

Menu dibuje perfil

Menu Dinàmica

Menu visualizar

% Gear C	alculation	2					
Archivo	Calculos	Dibujo del perfil	Dinámica	Visua	alizar	Configuración Ayuda	
					Resul	Itados	
					Espes	sor del diente	
					Diagr	rama deslizamiento especifico	
					Facto	or de forma YF	
					Juego	DS	
					Coor	denadas	
					Coor	denadas herramienta de forma	
					Dinár	mica de resultados	

Menu configuraciòn

🗞 Gea	r Calculation	2					
Archiv	o Calculos	Dibujo del perfil	Dinámica	Visualizar	Configuración	Ayuda	
					General		
					Imprimir		

Menu Ayuda

ſ	🗞 Gear (alculation	2						
	Archivo	Calculos	Dibujo del perfil	Dinámica	Visualizar	Configuración	Ayuda	a	
I							I	Manual	
							1	Información	

Menu Calculs: Editor datos

Cuadro principal de datos de entrada (fig.1)

Insertar el valor normal del módulo y pulse la tecla "tab".

En los campos superiores aparecerán los siguientes valores predeterminados:

Áng. de pres. norm.20 ° addendum 1.25xMn. dedendum 1.25xMn

Radio conexión 0.25xMn

🗞 Editor Datos De Entrada	×
	Herramienta Cremallera
Dedendum Herramienta	
Addendum Herramienta	
Editor De Herramientas	
Módulo normal	Addendum Herramienta
	1.25
Áng. de pres. norm.	Dedendum Herramienta Perfil DIN3960
20 0	HMS 1.25
Radio conexión	
.25 Radio) lieno
	Juego Helix ángulo
	0 0 DEG
N. dientes	Correc. Xm sobre r.de paso Dirección de la hélice
PIÑÓN O	
CORONA 0	0 Cancelar

Fig.1

Se puede cambiar el ángulo de contacto, la herramienta de adición, el dedendum herramienta, el radio de conexión. (Figura 2)

Cada vez que se pulsa la "Tab" en el dibujo de generación de rejilla se actualiza.

Con este método se puede diseñar sus engranajes en "Alto addendum" o como mejor creer es un perfil óptimo.

Con botón " Radio lleno " se dibuja el Radio lleno .

Con el botón "DIN 3960" todo el perfil se reajusta de acuerdo con la norma DIN en el valor predeterminado, suponiendo que todos los valores en función del módulo.

Al seleccionar el botón "G" puede introducir el ángulo de los valores de presión de grados.

Al seleccionar el botón "GPS" puede introducir el ángulo de la cara Una presión en grados, minutos, segundos.

Lo mismo se aplica a la hélice campo esquina subyacente.

х

Es aconsejable colocar los datos en decimal porque el cálculo es más preciso.

(Con grados, minutos, segundos, que están obligados a hacer un redondeo de segundos). Se puede insertar un valor del juego dentición.

Editor Datos De Entrada Herramienta Cremallera Dedendum Herramienta Addendum Herramienta Editor De Herramientas Módulo normal Addendum Herramienta 1 1.5 Perfil DIN3960 Áng. de pres. norm. Dedendum Herramienta DEG 20 2 MMS Radio conexión .25 Radio lleno

		Juego 0.05	Helix ángulo O	● DEG ○ HMS
PIÑÓN	<i>N. dientes</i> 15	Correc. Xm sobre r.de	e paso Dirección de la héli	ce <u>C</u> alcular
CORONA	40	-1		Cancelar

Fig. 2

Insertar los datos siguientes: (Figura 3) ángulo de hélice (si existe).

N ° de dientes del piñón de los dientes de engranaje

Al pulsar la flecha para el campo "El sentido de la hélice" para elegir si la derecha o la izquierda varado.

Por primera rueda, el campo de la segunda se completará automáticamente.

Pulsando el botón "Calcular" se traza el perfil de los dientes, la rueda 1 y la rueda 2, para la generación.

Fig.3

La siguiente cuadro se ve así: (fig.6):

7 8 e las tolerancias b c d	9 10 11 medida cordal DIN 39 e f g	□ 12 67 □ h
2 1,8794 2,0309 1,9049 2,0309 2 20 20,2836 20,2836 10 9,3913 10 1,4559 55,8485 0 0,05	(20°0'0") (20°17'1") (20°17'1") (10°0'0") (9°23'29") (10°0'0")	
PIÑÓN	CORONA	_
Derecha 15 15,705 1 37,4231 36,4628 30,4628 32,4628 30,4628	Izquierda 40 41,8799 -1 86,6871 83,2341 81,2341 79,2341 81,2341	~
	2 1,8794 2,0309 1,9049 2,0309 2,0309 2 20 20,2836 20,2836 10 9,3913 10 1,4559 55,8485 0 0,05 PIÑÓN Derecha 15 15,705 1 37,4231 36,4628 30,4628 30,4628 30,4628	2 1,8794 2,0309 2 20 20 20 20 20 20 20,2836 20*/200000 9,3913 9°23'29") 10 10°0'0") 9,3913 9°23'29") 10 10°0'0") 9,3913 9°23'29") 10 10°0'0") 9,3913 9°23'29") 10 10°0'0") 1,4559 55,8485 0 0,05 PIÑÓN CORONA Derecha Izquierda 15 40 15,705 41,8799 1 -1 37,4231 86,6871 36,4628 83,2341 30,4628 81,2341

Fig. 6

Utilizar la opción "Imprimir" para imprimir, pulsando el botón "Exportación resultados" para un archivo que se utilizará de acuerdo a sus necesidades. (Fig. 7)

CRIVELLIN PROGETTAZIONI S.r.I

12

🗞 Resultados		
Impresión Calidad DIN3962		
	/ 8 9	
Exportación	las tolerancias me	edida cordal DIN 3967 ———
Resultados Notas a b	c d	e 🛛 f 🗋 g 🗋 h
	10 E 130	
Diámetro interno	20,3730	74 2241
Diámetro de contacto útil	20,4020	77 9720
Diámetro en el comienzo de la evolvente útil	29,0470	76 8320
Angulo hélice en el diámetro exterior	11 0177	10 2411
Paso hélice	542 7513	1447 3369
raso nelice	542,7515	1447,5505
Datos de medición:		
Grosor circular frontal diente en el diámetro de la base	4,107	3,4618
Grosor circular normal diente en el diámetro de la base	4,052	3,4154
Grosor circular frontal diente en el diámetro exterior	0	1,6651
Grosor circular normal diente en el diámetro exterior	0	1,6385
Grosor cordal en el diámetro exterior	0	1,6384
Grosor cordal en el diámetro exterior	3,8344	2,3887
La medida de altura (H)	3,1249	1,0181
Addendum	3	1
Dedendum	1,5	3,5
N. dientes en la medición	3	5
Medida Wildhaber	15,8605	27,0325
Diámetro de las placas de contacto	32,5779	80,7294
Medida Rodillos	36,7253	84,0537 ≡
Diámetro rodillo	3,55	3,45
Deslizamiento en entrada	0,3424	1,7587
Deslizamiento en retiro	-1,7587	-0,3424
Deslizamiento total	2,1011	2,1011
Deslizamiento especifico puntos A1 E2	-1,4038	0,584
Deslizamiento especifico puntos E1 A2	0,7339	-2,7587
		· ·
< III		•

Fig. 7

Menu Càlculos: Editor equilibrado del deslizamiento especifico

Si desea optimizar el deslizamiento, en este caso, el programa actúa sobre la corrección Xm en el radio primitivo, seleccionar el menú "cálculos" y seleccionar "Entrada de datos Editor: equilibrio deslizamiento ". El programa propone los datos introducidos previamente. (Figura 8)

	intrada 📃 🔍
Herramienta Cremallera Dedendum Herramienta Addendum Herramienta	Herramienta Cremallera
Editor De Herramientas Módulo normal Addendum Herramienta 2 2.5 Áng. de pres. norm. Dedendum Herramienta 20 HMS Radio conexión 1.5 Radio lleno Radio lleno	Ierramientas Ierramientas Ierramienta Ierramienta 2.5 Ierramienta <
Equilibrado del deslizamiento (Entreeje teórico) Juego Helix ángulo DEG 0.05 10 •	el deslizamiento (Entreeje teórico) Juego Helix ángulo 0.05 10 OEG HMS N. dientes Dirección de la hélice 15 Derecha 40 Izquierda Calcular Cancelar

Fig. 8

Menu Càlculos:Resultados equilibrado del deslizamiento especifico

A continuación (Figura 9) los resultados después de la ejecución del càlculo.

S Resultados		
	7 8 9	10
Exportación	le las tolerancias me	edida cordal DIN 3967
Resultados Notas a	b 🗌 c 🗌 d 🗌	e ∏f ∏g ∏h
	/8.5/38	
Diámetro interno	26,8948	74,8021
Diámetro de contacto útil	28,8304	78.0693
Diámetro en el comienzo de la evolvente útil	28,6557	77.0604
Angulo hélice en el diámetro exterior	11,7373	10.3094
Paso hélice	542,7513	1447.3369
	012//010	1117,0000
Deter de medialém		
Datos de medición:		
Grosor circular frontal diente en el diámetro de la base	3,9101	3,6588
Grosor circular normal diente en el diámetro de la base	3,8577	3,6097
Grosor circular frontal diente en el diámetro exterior	0,9547	1,6372
Grosor circular normal diente en el diámetro exterior	0,9348	1,6108
Grosor cordal en el diámetro exterior	0,9347	1,6107
Grosor cordal en el diámetro exterior	3,6293	2,5953
La medida de altura (H)	2,8279	1,3054
Addendum	2,716	1,284
Dedendum	1,784	3,216
N. dientes en la medición	3	5
Medida Wildhaber	15,6662	27,2268
Diámetro de las placas de contacto	32,4862	80,7929
Medida Rodillos	36,3395	84,6401 ≡
Diámetro rodillo	3,55	3,45
Deslizamiento en entrada	0,5437	1,4996
Deslizamiento en retiro	-1,4996	-0,5437
Deslizamiento total	2,0432	2,0432
Deslizamiento especifico puntos A1 E2	-2,4084	0,7066
Deslizamiento especifico puntos E1 A2	0,7066	-2,4085
<		

Fig. 9

Menu Càlculos: Cálculo medida rodillo

Si se desea calcular la medida de rodillo, seleccione el menú "cálculos" y seleccione

"Medida rodillos."

Este cuadro de diálogo: (Figura 10)

El programa calcula la porción de rodillo y realiza el cálculo por la elección de un diámetro del rodillo más cercano posible a la teórica.

Cambiando el diámetro del rodillo de acuerdo a sus necesidades y pulse el botón "Calcular".

El programa vuelve a calcular los datos con el nuevo rodillo.

🗞 Cálculo Medida Rodillos 📃 🗾					
	PIÑÓN	CORONA			
z	15	40			
Min	1.9942	2.2455			
Teorético	3.5514	3.4528			
Мах	6.5631	4.9446			
Diámetro rodillo	3.55	3.45]		
Calcular					

Fig. 10

Menu Càlculos: Modifica nº dientes de medición (fig.11)

Si desea cambiar el número de dientes de la medición Wildhaber compartir:

Seleccione el menú Edición Nº dientes de la rueda de medición " Cálcular ", aparece el cuadro (fig. 12)

Resultados		_ O _X
	7 8 9	0 🗆 10 💷 11 💷 12
Exportación Impresión d	le las tolerancias m	edida cordal DIN 3967
Resultados	b c d]e ∏f ∏g ∏h
Diametro de base	28,5/38	/0,190/
Diámetro interno	26,8948	74,8021
Diámetro de contacto útil	28,8304	78,0693
Diámetro en el comienzo de la evolvente útil	28,6557	77,0604
Angulo hélice en el diámetro exterior	11,7373	10,3094
Paso hélice	542,7513	1447,3369
Datos do modición:		
Datos de medición.		
Grosor circular frontal diente en el diámetro de la base	3 9101	3 6588
Grosor circular normal diente en el diámetro de la base	3 8577	3 6097
Grosor circular frontal diente en el diámetro exterior	0.9547	1.6372
Grosor circular normal diente en el diámetro exterior	0.9348	1,6108
Grosor cordal en el diámetro exterior	0,9347	1,6107
Grosor cordal en el diámetro exterior	3,6293	2,5953
La medida de altura (H)	2,8279	1,3054
Addendum	2,716	1,284
Dedendum	1,784	3,216
N. dientes en la medición	3	5
Medida Wildhaber	15,6662	27,2268
Diámetro de las placas de contacto	32,4862	80,7929
Medida Rodillos	36,3395	84,6401 ≡
Diámetro rodillo	3,55	3,45
Deslizamiento en entrada	0,5437	1,4996
Deslizamiento en retiro	-1,4996	-0,5437
Deslizamiento total	2,0432	2,0432
Deslizamiento especifico puntos A1 E2	-2,4084	0,7066
Deslizamiento especifico puntos E1 A2	0,7066	-2,4085
		-
•		•

Fig. 12

Menu Càlculos: Espesor cordal en el diàmetro

Si desea conocer el espesor cordal y la altura midiendo el calibre de nonio doble

Seleccione el menú "cálculos" y seleccionar "rueda de acordes Espesor" aparece este cuadro: (fig.13)

🐁 Espesor Cordal		X
PIÑÓN		
Insertar el diámetro para examin Min 26.895	ar espesor Max 35.895	
Espesor cordal normale	0	Calcular
Altura de medición	0	
CORONA		
Insertar el diámetro para examina Min 74.802	ar espesor Max 83.802	0
Espesor cordal normale	0	Calcular
Altura de medición	0	
(

Fig. 13

Se calcula el espesor y la medida de altura: (fig.14)

	×
ar espesor Max 35.895	34
2.1579	Calcular
.983	
ar espesor Max 83.802	80
2.9733	Calcular
1 9295	
	ar espesor Max 35.895 2.1579 .983 ar espesor Max 83.802 2.9733

Fig. 14

Menu Càlculos: Medida Rodillos Cremallera

El programa también calcula la cuota de rodillos de la cremallera, se abre este cuadro: (fig.15)

Fig.15

Pulsando el botón "Calcular" en la mismo cuadro aparecerán los resultados: (fig.16)

Fig.16

Menu Càlculos: Cálculo tiempo de tallado con fresa madre

El programa calcula el tiempo de corte con fresa madre, se abre este cuadro: (fig.17)

🐁 Cálculo Tiempo De Tallado Co	on Fresa Madre		
Diámetro de la fres 150 mm Avance / giro tabla 0.5 mm N. revoluciones de 95.5 RP Angulo de hélice 10 Piñón Diámetro interior del engr 26.8948 Diámetro exterior del engr 35.8948 Número de dientes 15 Corona Diámetro interior del engr 74.80213 Diámetro exterior del engr 83.80213 Número de dientes 40	anaje ranaje ranaje ranaje	Banda por dentar10mmN. principios fresa madre2Profundidad de pasada4.5mmMódulo Normal2	Calcular Imprimir Exportación Resultados

Fig. 17

Pulsando el botón "calcular", aquí están los resultados: (fig.18)

🐁 Cálculo Tiempo De Tallado Con Fresa Ma	dre			×
Diámetro de la fresa madre 150 mm Avance / giro tabla 0.5 mm N. revoluciones de la fresa ma 95.5 RPM Angulo de hélice 10	adre	Banda por dei 10 N. principios f 2 Profundidad o 4.5 Módulo Norm 2	ntar mm fresa madre le pasada mm al	Calcular Imprimir Exportación Resultados
Piñón Diámetro interior del engranaje 26.8948 Diámetro exterior del engranaje 35.8948 Número de dientes 15	Carrera Carrera Carrera Tiempo Tiempo Tiempo Tiempo	de entrada de salida fre totale entrada fres por dentar b de salida de total	esa madre sa madre banda la fresa madre	28,4 1,3 39,7 00:04:27 00:01:34 e 00:00:12 00:06:14
Corona Diámetro interior del engranaje 74.80213 Diámetro exterior del engranaje 83.80213 Número de dientes 40	Carrera Carrera Carrera Tiempo Tiempo Tiempo Tiempo	de entrada de salida fre totale entrada fres por dentar b de salida de total	esa madre a madre banda la fresa madre	28,6 1,3 39,9 00:11:57 00:04:11 00:00:33 00:16:42

Fig. 18

Menu Càlculos: Cálculo tiempo de tallado con herramienta circular

El programa calcula el tiempo de corte con fherramienta circular, se abre este cuadro

: (fig.19)

🐁 Cálculo Tiempo De Tallado Con Crema	illera 📃 💌
Avance en rotation 0.5 mm/golpe	Avance en entrada 0.05 mm/golpe
N. golpes de cuchilla para minuto 75	N. pasadas posteriores 4
Piñón Profundidad de pasada 4.5 mm	Diámetro primitivo de la rueda 30.4628 mm Tiempo de base H : M : S
Corona Profundidad de pasada 4.5 mm	Diámetro primitivo de la rueda 81.2341 mm Tiempo de base H:M:S

Pulsando el botón "calcular", aquí están los resultados (fig.20)

🌯 Cálculo Tiempo De Tallado Con Cremal	lera 🖉
Avance en rotation 0.5 mm/golpe	Avance en entrada 0.05 mm/golpe
N. golpes de cuchilla para minuto 75	N. pasadas posteriores 4
Piñón Profundidad de pasada 4.5 mm	Diámetro primitivo de la rueda 30.4628 mm Tiempo de base Calcular
Corona Profundidad de pasada	00:11:24 H : M : S Imprimir Diámetro primitivo de la rueda 81.2341 mm Exportación Resultados
4.5 mm	Tiempo de base 00:28:25

Menu Càlculos: Caso (A) Entreeje fijo: Cálculo hélice sin corrección

Conociendo la distancia entre ejes, el programa calcula el ángulo de hélice que es necesario para lograr esta distancia sin ninguna corrección Xm. (fig.21

Herramienta Cremallera					
Dedendum Herramienta Addendum Herramienta					
Editor De Herramientas					
Módulo normal Addendum Herramienta 2 2.5					
Áng. de pres. norm. Dedendum Herramienta Perfil DIN3960 20 HMS 2.5					
Radio conexión .5 Radio lleno					
Caso (A) Entreeje fijo: Cálculo hélice sin corrección					
Juego Distancia entre ejes 0.05 55.8485					
N. dientes Calcular					
CORONA 40					

Fig. 21

Menu Càlculos: Caso (B) Entreeje fijo: Datos Xm de una rueda

Conociendo el entreeje y la corrección Xm en una rueda, el programa calcula la corrección Xm de otra rueda de. (fig.22)

Section Datos De Entra	da			
Dedendum Herrar Addendum Herrar	nienta nienta		Cremallera	
Editor De Herramientas Módulo normal Addendum Herramienta 2 2.5 Áng. de pres. norm. DEG 20 HMS Radio conexión 1.5 Radio lleno Radio lleno				
Caso (B) Entreej Juego 0.05	e fijo: Datos X	m de una rueda Distancia entre eje 55.8485	es Helix ángul 10	o DEG O HM S
PIÑÓN CORONA	N. dientes 15 40		orrección Xm 716 	<u>C</u> alcular C <u>a</u> ncelar

Fig. 22

Menu Càlculos: Caso (C) Entreeje fijo: Equilibrado del deslizamiento especifico

Conociendo el entreeje, el programa calcula la correcciones XM1 XM2 a fin de equilibrar el deslizamiento. (fig.23

🍓 Editor Datos De Entrada			×
Dedendum Herramienta Addendum Herramienta	Herramienta Crema	allera	
Editor De Herramientas			
Módulo normal	Addendum 2.5	n Herramienta	
Áng. de pres. norm. 20	DEG Dedendum HMS 2.5	Herramienta Per	fil DIN3960
Radio conexión .5 Radio	lleno		
Caso (C) Entreeje fijo: Equilibra	do del deslizamiento	especifico]
Juego 0.05	Distancia entre ejes 55.8485	Helix ángulo 10	● DEG ○ HMS
PIÑÓN	N. dientes 15		<u>C</u> alcular
CORONA	40		Cancelar

Fig. 23

Menu: Dibuje perfil

El menú "Dibujar el perfil" se puede representar:

- El perfil de los dientes de la rueda dentada 1
- El perfil de los dientes de la rueda dentada 2
- El perfil de los dientes del engranaje 1 con la cremallera de generación o normal
- El perfil de los dientes del engranaje 2 con la cremallera de generación o normal
- El perfil de los dientes del engranaje 1 con engranaje 2

En este caso (fig.24): "Dibuje un sector"

Fig. 24

Pulsando el botón de "cambio de escala" para cambiar la escala de visualización: (fig.25 - 26)

Fig.26

Menu Dibuje perfil : Cuadro de animación (fig.27)

"Etapa de rotaction" Define la etapa de rotación más grande o más pequeño.

"Mostrar los puntos" Muestra los puntos de contacto que participan en el reporte de conducta.

"Directiòn de rotatiòn" Define la rotación del piñón en sentido horario o giro en sentido antihorario.. "Imprimir" Botòn de impresión.

"El cambio de escala" Zoom en la escala que desee.

"Zoom", el deslizador de la derecha lleva a cabo un zoom dinámico.

Al pulsar el botón del mouse para que aparezca el cursor de Windows.

Es posible mover el dibujo representado en el cuadro.

FIG. 27

Menu Dibuje perfil: dibujar piñón

Después de ver la siguiente cuadro se pulsa el botón "Herramienta cremallera" (fig.28)

Pulsando el botón de "Animación" y hacer zoom, esta es el cuadro de animación. (fig.29)

Fig.29

Menu Visualizar: Lista de coordenadas

En el menú "Perfil Dibujo" se puede seleccionar el "Coordenadas" Usted puede conseguir una lista de puntos de coordenadas del diente o del Hueco entre dientes de la rueda 1 y 2 (fig.31)

🌯 Coordenadas	
PIÑÓN	CORONA
Diente	Diente
💿 Vano	Vano
	Visualizar

Fig.31

X e Y son las coordenadas cartesianas del centro de engranaje

R y alfa son las coordenadas polares del engranaje central

Usted puede obtener un diseño de dientes en la escala deseada.

Pulsando el botón poner el valor de la escala de ampliación en el campo y pulse el botón "Dibuja el perfil" (fig.32)

% Coorder	nadas	-	COLUMN DE LA COLUMN	-	17708 81000	۰.	
	Cartesi	anas	Polare	s			
N°	Х	Y	R	Alfa		Se	emipertil desde el centro del engranaje
Grand			6			*	
Coorde	enadas	<u>alente pina</u>	on :				
Mn = 2	Z = 15	Beta = 10	Xm = 0,716				
Fondo							
	2 7050	10 1505	12 4474	10	D Interior		
3	2,7959	13,1535	13,4474	10.9859	K.Interior		
4	2,42	13,2274	13,447	10,3678			
5	2,34	13,2674	13,4722	10,0025			
6	2,28	13,3074	13,5013	9,7223			
7	2,22	13,3474	13,5308	9,4432			
8	2,18	13,38/4	13,5037	9,2488			
10	2,14	13,4626	13,6275	8,9225			
11	2,08	13,5074	13,6666	8,7542			
12	2,06	13,5474	13,7031	8,6461			
13	2,04	13,5874	13,7397	8,5386			Escala 10:1
14	2,02	13,6274	13,7763	8,4316			
15	2,0100	13,005	13,8122	8,3701			Imprimir Señala Perfil
17	1.9906	13,745	13,8884	8,2404		-	
18	1,98	13,7874	13,9288	8,1723		=	Exportación Resultados
19	1,9706	13,825	13,9648	8,1122			
20	1,96	13,8674	14,0052	8,0448			
21	1,96	13,9074	14,0448	8,022			
22	1,90	13,9474	14,0044	7,9993			
Evolver	nte						
23	1,9525	14,1942	14,3279	7,8322	R.Inicio Evolvente		
24	1,9532	14,3768	14,5088	7,7366			
25	1,9397	14,5612	14,6898	7,5878			
26	1,9158	14,7469	14,8708	7,4022			
27	1,8831	14,9335	15,0518	7,1869	R de Paso		
29	1,8423	15,1209	15,2314	6,9465	R.ue P050		
30	1,7941	15,309	15,4137	6,6842			
31	1,739	15,4974	15,5947	6,4024			
32	1,6772	15,6863	15,7757	6,1029			
33	1,609	15,8753	15,9567	5,7873			
34	1,5346	16,0645	16,1376	5,4509			
36	1,3679	16,4428	16,4996	4,7557			
37	1,2759	16,6317	16,6806	4,3868			
38	1,1782	16,8203	16,8615	4,0067			
39	1,0749	17,0086	17,0425	3,6161			
40	0,9661	17,1964	17,2235	3,2155			
42	0,0519	17,5030	17,5854	2,8050			
43	0,6074	17,756	17,7664	1,9593		-	
				- inner			
					,		

Fig.32

Menu Visualizar: Coordenadas Herramienta De Forma

Desde el menú "Dibujos Perfil" se puede seleccionar la "herramienta de forma."

Usted puede obtener una lista de coordenadas con 45 puntos alrededor de la forma del diente o la forma de la herramienta del piñón y la corona (fig.33)

Q	Coordenadas		
ſ	PIÑÓN	CORONA	
	Oiente	Diente	
	Vano	Vano	
		Visualizar	

Fig.33

X e Y son las coordenadas cartesianas del centro de engranaje

R y alfa son las coordenadas polares del engranaje central

Usted puede obtener un diseño de dientes en la escala deseada.

Pulsando el botón poner el valor de la escala de ampliación en el campo y pulse el botón "Dibuja el perfil"" (fig.34)

🇞 Coorder	nadas Herra	imienta De Forma		-	a - logan through the		
	Cartesi	anas	Polare	s		Ser	niperfil desde el centro del engranaie
N°	X	Y	R	Alfa		_	······································
Coorde	enadas	diente piñón	1			Â	
Mn = 2	Z = 15	Beta = 10 Xm	= 0,716				
Fondo							
2	2,7959	13,1535 13,1874	13,4474 13,4336	12 10.9859			
4	2,42	13,2274	13,447	10,3678			
5	2,34	13,2674	13,4722	10,0025			
6	2,28	13,3074	13,5013	9,7223			
7	2,22	13,3474	13,5308	9,4432			
8	2,18	13,3874	13,5637	9,2488			
9	2,14	13,4274	13,5969	9,0554			
11	2,1130	13,4020	13,0275	0,9225			
12	2,00	13 5474	13 7031	8 6461			
13	2,00	13,5874	13,7397	8,5386			Escala 10:1
14	2,02	13,6274	13,7763	8,4316			
15	2,0106	13,665	13,8122	8,3701			Imprimir Coñela Dorfil
16	2	13,7074	13,8525	8,3013			imprimir Senaia Perni
17	1,9906	13,745	13,8884	8,2404			
18	1,98	13,7874	13,9288	8,1723			Exportación Resultados
19	1,9706	13,825	13,9648	8,1122			
20	1,96	13,8674	14,0052	8,0448		-	
22	1,96	13,9074	14,0448	7,9993		=	
Evolver	ıte						
23	1,9525	14,1942	14.3279	7,8322			
24	1,9517	14,4078	14,5394	7,7146			
25	1,9327	14,6237	14,7509	7,5288			
26	1,9003	14,8413	14,9624	7,2965			
27	1,8564	15,0599	15,1739	7,0272			
28	1,5921	15,148	15,2314	6	R.de Paso		
29	1,8021	15,2795	15,3854	6,7266			
30	1,/382	15,4998	15,597	6,3988			
31	1,0053	15,7205	15,8085	6,0469 E 6722			
33	1,4937	16,1626	16,2315	5,0733			
34	1,3955	16,3837	16,443	4,8686			
35	1,2895	16,6045	16,6545	4,4406			
36	1,1757	16,825	16,8661	3,9971			
37	1,0542	17,045	17,0776	3,5393			
38	0,9253	17,2643	17,2891	3,068			
39	0,789	17,4828	17,5006	2,5841			
40	0,6455	17,7004	17,0226	2,0884			
42	0,494/	18 132	18 1351	1,5810			
43	0.1719	18,3459	18,3467	0.5368			
44	0	18,5582	18,5582	0			
•							

Fig.34

Menu Visualizar: Lista espesor diente En el menú "Dibuje Perfil ", se puede conseguir una lista con el espesor del diente: (fig.36)

b Espesor Del D	iente				1 - Hannell		X
Imprimir	Expor	tación Resultados					
Diámetro X	Espesor Circular Frontal	Espesor Circular Normal	Espesor Cordal Frontal	Espesor Cordal Normal	Addendum Cordal		
<u>PIÑÓN :</u>							Â
Espesores s	obre evolv	ente					
35,8948	0,9547	0,9348	0,9546	0,9347	0,0063	* D. Exterior	
35,4948	1,2419	1,2165	1,2416	1,2162	0.2109		
35.0948	1.5163	1,4859	1.5158	1,4855	0.4164		
34,6948	1,7778	1,743	1,777	1,7422	0.6228		
34 2048	2 0262	1 0874	2 025	1 9863	0 8200		
33 8048	2,0202	2 2101	2,025	2 2175	1 0377		
22 4048	2,2014	2,2191	2,2337	2,2175	1,0377		
33 0048	2,4032	2,4370	2,4009	2,4330	1 4547		
22 6040	2,0913	2,0733	2,0004	2,0404	1,454/		
32,0940	2,0000	2,0352	2,0010	2,0315	1,0030		
32,2948	3,0055	3,0133	3,0009	3,0088	1,8/2/		
31,8948	3,2308	3,1//1	3,2253	3,1/1/	2,0817		=
31,4948	3,381	3,3262	3,3745	3,3198	2,2907		
31,0948	3,5156	3,46	3,5081	3,4526	2,4993		
30,6948	3,6337	3,5777	3,6252	3,5693	2,7074		
30,4628	3,6943	3,6382	3,6853	3,6293	2,8279	* D.de Paso	
30,2948	3,7344	3,6783	3,725	3,669	2,9149		
29,8948	3,8164	3,7605	3,806	3,7503	3,1216		
29,4948	3,8775	3,8222	3,8663	3,8112	3,3273		
29,0948	3,9144	3,8601	3,9026	3,8484	3,5315		
28,6948	3,9192	3,8663	3,9071	3,8543	3,7336		
Espesores b	oajo evolve	nte					
28,1689	3,9328	3,8815	3,92	3,8689	4		
28,0897	3,9328	3,8819	3,92	3,8692	4,04		
28,0105	3,9329	3,8822	3,92	3,8695	4,08		
27,9296	3,9544	3,9037	3,9412	3,8907	4,1224		
27,8577	3,9735	3,9228	3,96	3,9095	4,16		
27,7769	3,9949	3,9443	3,9812	3,9307	4,2024		
27,7051	4,014	3,9634	4	3,9495	4,24		
27,6243	4,0355	3,9849	4,0212	3,9707	4,2824		
27,5526	4,0546	4,004	4,04	3,9896	4,32		
27,4794	4,0951	4,0443	4,08	4,0293	4,36		
27,4062	4,1357	4.0846	4.12	4,0691	4.4		
27.3332	4,1762	4,1249	4.16	4,1089	4.44		
27.255	4,2443	4,1925	4,2272	4,1756	4,4848		
27 1937	4 2979	4 2456	4 28	4 2279	4 52		
27 1275	4 370	4 326	4 36	4 3072	4 56		
27.0615	4 4602	4 4064	4 44	4 3865	4.6		
27,0015	4 592	4 527	4 56	4 5052	4 64		
27,0020	4,202	7,327	4,50	4 6241	4.69		
20,9443	4,7039	4,04//	4,00	4,0241	4,08		
20,8939	4,8005	4,8080	4,84	4,/824	4,72		
26,8672 26,8948	5,1515 5,6328	5,5658	5,12 5,5917	5,0592 5,5252	4,76 4,7939	* D.Interno	
Contonn .							
Espesores s	1 6272	ente 1.6109	1 6271	1 6107	0.009	* D Extorior	-

Menu Visualizar: Resultados (fig.37)

🗞 Resultados			_
Impresión Calidad DIN3962			
	7 9	0 0 10 0 11 0 12	
		9 10 11 12	
Exportación Impresión de	las tolerancias	medida cordal DIN 3967	
Resultados Notas a b	c d	□e □f □g □h	
			<u> </u>
<u>Datos finales :</u>		Í	
Médulo Normal	2		
Módulo Normal Base	1 8704		
Módulo circunferencial	2,0309		
Módulo circunferencial base	1,9049		
Módulo circunferencial de funcionamento	2,0309		
Módulo normale de funcionamento	2		
Ángulo de presión herramienta	20	(20°0'0")	
Ángulo de presión de funcionamento	20,2836	(20°17'1")	
Ángulo de presión circunferencial	20,2836	(20°17'1")	
Ángulo hélice sobre el diámetro primitivo	10	(10°0'0")	
Ángulo hélice sobre el diámetro de base	9,3913	(9°23'29")	
Ángulo hélice sobre el diámetro de funcionamiento	10	(10°0'0")	
Relación de conducta	1,4945		
Distancia entre ejes de operación y de montaje	55,8485		
Suma de Correcciones	0		
Juego establecido	0,05	=	=
	PIÑÓN	CORONA	
N. dientes	15	40	
Nº dientes imaginarios	15,705	41,8/99	
Correccion en el radio primitivo xm	0,/16	-0,716	
Diametro exterior teorico con dientes de punta	37,1104	87,0908	
Diámetro primitivo de funcionamiento	30 4628	81 2341	
Diámetro primitivo correcto	31 8048	79 8021	
Diámetro primitivo	30 4628	81 2341	
Diámetro de base	28,5738	76,1967	
Diámetro interno	26,8948	74,8021	
Diámetro de contacto útil	28,8304	78,0693	
Diámetro en el comienzo de la evolvente útil	28,6557	77,0604	
Angulo hélice en el diámetro exterior	11,7373	10,3094	
Paso hélice	542,7513	1447,3369	
Datos de medición:			
Grosor circular frontal diente en el diámetro de la base	3 0101	3 6588	
Grosor circular normal diente en el diámetro de la base	3,8577	3,6097	
Grosor circular frontal diente en el diámetro de la base	0.9547	1,6372	
Grosor circular normal diente en el diámetro exterior	0.9348	1,6108	
Grosor cordal en el diámetro exterior	0,9347	1,6107	
Grosor cordal en el diámetro exterior	3,6293	2,5953	
La medida de altura (H)	2,8279	1,3054	+
··· · · · · · · · · · · · · · · · · ·	•		

GEAR-1

34

Menu Visualizar: Diagrama de deslizamiento (fig.38)

Fig.38

Menu Visualizar: Factor de forma Yf (fig.39)

Menu Visualizar: Juego entre los dientes

Si en los datos de entrada de un juego estaba programado entre los dientes, en el menú Visualizar se puede ver todas las luces de los dientes derivados de los datos que ha establecido. (JTT = juego entrado)

Menu Dinàmica

Se realiza el cálculo dinámico y el tamaño de la banda dentada como una función de las fuerzas y de un par de ciclo de trabajo.

El cálculo se realiza según lo publicado por Ing. Georges Henriot (1921-2009), uno de los principales expertos mundiales de engranajes.

El cálculo es muy fiable, como siempre que se sepa cómo estimar los coeficientes del factor de servicio, la calidad de los dientes y las horas de duración.

El cálculo de la fatiga no es un cálculo preciso como el cálculo geométrico, pero depende de muchas variables y factores "analógicas", empíricos, tomados de la experimentación práctica.

Por lo tanto "Crivellin Progettazioni" no asume ninguna responsabilidad sobre el resultado, un resultado que está condicionado por el conocimiento técnico y de capacidad estimada del usuario.

Aquí no encontrará las fórmulas utilizadas en el programa, pero será plenamente establecido en el anexo de este manual del usuario.

- 1) Introducir una duración de horas programadas
- 2) Introducir un ciclo de trabajo esperado (pares y vueltas del piñón)
- 3) Introducir un factor de servicio
- 4) Inserte la clase de precisión y el dentado
- 5) Elegir el material de construcción del piñón (ver Fig.41)
- 6) Elegir el material de construcción de la corona (ver Fig.41)

00	Seleccionar Mater	rial		-	×
1	Tipo de mater	ial			
	Aceros de cimen	tación y temple			
	Aceros no tratad	os			
	Fundición				
	Material	R	HB	δb	ΩΟ
	16 Ni Cr Mo 12	125-155	250	45	1,5
	18 Ni Cr Mo 7	120-150	240	43	1,4
1	18 Ni Cr Mo 5	125-155	240	42	1,3
	20 Ni Cr Mo 2	120-160	235	41	1,2
	16 Ni Cr Mo 2	95-130	230	40	1,1
	16 Ni Cr 11	115-145	235	39	1
	12 Ni Cr 3	85-100	200	33	1
	20 Cr Ni 4	125-160	250	38	1
	16 Cr Ni 4	110-145	220	37	1
	Cr 16	70-110	160	36	1
	Cr 10	50-90	130	30	1
					Seleccionar
]

Fig. 41

Pulsando el botón "Calcular" y los resultados serán como los de fig.42

Imprimir Exportación Resultados Datos finales :	
Datos finales : Datos geométricos Relación de conducta transverso 1,4945 Relación de recubrimiento 2,5512 Relación de conducta total 4,0456 Relación de transmisión 0,375 Datos introducidos 20000	2
Datos geométricos Relación de conducta transverso 1,4945 Relación de recubrimiento 2,5512 Relación de conducta total 4,0456 Relación de transmisión 0,375	
Datos geométricos Relación de conducta transverso 1,4945 Relación de recubrimiento 2,5512 Relación de conducta total 4,0456 Relación de transmisión 0,375	
Relación de conducta transverso 1,4945 Relación de recubrimiento 2,5512 Relación de conducta total 4,0456 Relación de transmisión 0,375 Datos introducidos Duración en horas 20000	
Relación de recubrimiento 2,5512 Relación de conducta total 4,0456 Relación de transmisión 0,375 Datos introducidos Duración en horas 20000	
Relación de conducta total 4,0456 Relación de transmisión 0,375 Datos introducidos	
Datos introducidos Duración en horas 20000	
Datos introducidos Duración en horas 20000	
Duración en horas 20000	
Tiempo % Z1 Carga daN Z2 Carga daN Z1 Nº Revoluciones Z2 Nº Revoluciones	
50 20 53,333 1500 562.5	
25 10 26,667 1000 375	
20 1 2,667 10 3,75	
5 5 13,333 100 37,5	
Clase de precisión 1 (Extrema precisión V.P => 100 Mt/seg)	
Factor de servicio KA 1	
PIÑÓN CORONA	
N. dientes 15 40	
Material de construcción 16 Ni Cr Mo 12 16 Ni Cr Mo 12	
Datos dinámicos	
N° revoluciones / 1' medios 1007 377,625	
Par DaN*Mt 20 53,333	
Duración equivalente a presión (H) 10078	
Duración equivalente a la ruptura (H) 10004	
Anchura banda minima a presión (mm) 92,3101 81,2593	
Ancnura banda minima a la ruptura (MM) 59,4546 55,2/1/ Relación banda / Diámetro primitivo (b/d1) 3.0303	
Banda recomendada (mm) 93	
Coeficientes (datos comunes)	
Factor de velocidad Ky 0.951	

Fig. 42

El programa calcula 4 valores de la longitud efectiva del diente:

1) Una rotura, (flexión) del piñón

2) Una ruptura, (flexión) de la corona

3) La compresión (presión específica de Hertz) del piñón

4) La compresión (presión específica de Hertz) de la corona

Obviamente, el valor más alto de estos 4 es la anchura recomendada por el programa

Él es para el usuario para decidir qué hacer.

Por ejemplo: un diseñador de transmisiones para los coches de carreras, considera normalmente una duración de unas pocas horas (1 carrera), por lo tanto, vuela en la presión de Hertz y tiene en cuenta sólo el fin de flexión calculado (que es más pequeño, como lo demuestra resultados).

GEAR-1

Menu configuración: (fig.41)

% Configuración General	X
Italiano English Spanish	French
Introducción ángulos predeterminad	dos de modo S
Radio acuerdo exter. Herramienta Adendún herramienta de cremallera Dedendún herramienta de cremallera	 O.25 0.16 1.25 1.16 1.25 1.16
	Guardar

fig.43

Puede configurar las preferencias por default para que queden almacenados.

Establecer los grados de preferencia o grados, minutos y segundos para la introducción de los ángulos

(Ángulo de presión, hélice, etc.)

Ajuste el radio de la punta

Ajuste el estante de herramientas adenda.

Ajuste el estante de herramientas dedendum.

Cada vez que se inicia el programa de estos valores serán propuestos por defecto, pero siempre se puede cambiar la preferencia de los datos ingresados localmente.

Menu configuración: Ajustes de impresión

El programa imprime todos los datos necesarios para la construcción de los engranajes, seleccionar "Configuración de impresión" todavía se puede elegir en cualquier momento los datos que desea imprimir, la salida impresa por lo que es adaptable a las necesidades del operador. (Fig.44)

Conliguración De Impresión	
Imprimir sólo las líneas seleccionadas	
✔Módulo Normal Base	•
✔Módulo circunferencial base	
Módulo circunferencial de funcionamento	
Módulo normale de funcionamento	
✔Ángulo de presión de funcionamento	
Angulo de presión circunferencial	Ξ
Angulo hélice sobre el diámetro de base	
✔Ángulo hélice sobre el diámetro de funcionamiento	
Relación de conducta	
Diámetro exterior teórico con dientes de punta	
✔Diámetro primitivo correcto	
✔Diámetro de contacto útil	
✔Diámetro en el comienzo de la evolvente útil	
✔Angulo hélice en el diámetro exterior	
✔ Paso hélice	
Grosor circular frontal diente en el diámetro de la base	
Grosor circular normal diente en el diámetro de la base	
Grosor circular frontal diente en el diámetro exterior	-
Guardar	

Fig.44

Seleccionar o borrar los datos que va a aparecer.

"GUARDAR"" Le permite guardar LA selección.

Menu Ayuda

Si selecciona "Manual" se abre el archivo PDF con el manual de instrucciones

La entrada "información" proporciona información sobre la versión del programa.. (fig.45)

Fig.45

Programa GEAR-1 INTERNI

El programa de engranajes interiores varía poco de cálculo Gear 2

Varía de algunos cuadros de salida, que son los siguientes:

Cuadro de visualización de dibujo (fig. 46)

Visualizar Perfil Dientes

Fig. 46

Cuadro de animación, donde se puede mover axialmente el piñón para comprobar gráficamente la interferencia. (Fig. 47)

GEAR-1

х

Menu Visualizar: Diagrama de deslizamiento. (fig. 48)

Fig. 48

Menu Visualizar: Factor de forma Yf. (fig. 49)

Programa GEAR-1 SINGOLO

El programa GEAR-1 SINGOLO varía poco de cálculo Gear 2

Varía de algunos cuadros de salida, que son los siguientes.

Menu general

Menú DIN 5482, calcula los perfiles dentados, DIN 5482 masculino y femenino

Mascu	lino) Fem	enino
15x12	© 35x31	58x53	© 80x74
17x14	38x34	© 60x55	© 82x76
) 18x15		© 62x57	© 85x79
20x17	42x38	© 65x60	© 88x82
) 22x19	45x41	© 68x62	© 90x84
) 25x22	48x44	70x64	© 92x86
) 28x25	© 50x45	72x66	© 95x89
) 30x27	© 52x47	75x69	© 98x92
) 32x28	© 55x50	© 78x72	100x94

Menu topping

🔅 Gear Singolo 2					
Archivo Calculos	Topping DIN 5482	Dibujo del perfil	Visualizar	Configuración	Ayuda
	Rueda externa Rueda interna				

Desde este menú se puede calcular perfiles arbitrarios generados por un estante de herramientas a voluntad.

El diámetro interior y el diámetro exterior de la rueda se crean a partir de la cremallera generatriz.

El programa de GEAR 2 individual es extremadamente flexible y es muy útil en la reconstrucción de un emgranaje que no dispone de los datos principales.

En el cuadro de entrada, puede imponer:

En la adición, la dedendum, el espesor circular.

El generador de bastidor genera el perfil, siempre que sea consistente y factible.

Algunos ejemplos:

El cuadro de entrada acepta valores que conciernen al generador de herramienta y la rueda.

Hasta que se pulsa el botón "Confirmar" se muestra el generador de herramienta.

El programa calcula la viabilidad herramienta.

Editor Datos De Entrada			×
Editor Topping Módulo normal 3 Áng. de pres. norn 20 Gruesa vano de c 4.712389	m. ⊚ DEG ⊚ HMS remallera circ. norm.	Diámetro exterior 92 Diámetro interno 88 Radio conexión 0	
DIENTES N. die EXTERNOS 30	Helix ángulo O entes Correc. Xm so O	© DEG ○ HMS obre r.de paso Dirección de la hélice Confirma Confirma Confirma Confirma Confirma Confirma Confirma Confirma	

Pulsando el botón "Confirmar" aparece el generador herramienta de forma (si es posible)

🔅 Editor Datos De Entrada	🖉 Editor Datos De Entrada				
Dedendum Herramienta Addendum Herramienta	Herramienta	Cremallera			
Editor Topping Módulo normal 3 Áng. de pres. norm. 20 Gruesa vano de cremaller 4.712389	● DEG ○ HMS a circ. norm.	Diámetro exterior 92 Diámetro interno 88 Radio conexión 0			
DIENTES EXTERNOS 30	Helix ángulo O Correc. Xm sobre O	● DEG	Confirmar Calcular Cancelar		

Pulsando el botón "Calcular" y el resultado es este:

🔅 Visualizar Perfil Dientes	×
Image: Weight of the second	
	Zoom
	1
Gráfico sector Sección Circunf. MN = 3 Z = 30 Escala 2 :1	

GEAR-1

46

Otros ejemplos:

🌼 Visualizar Perfil Dientes				
Herramienta Cremallera Engranar Cremallera	 Rodillo Rueda completa 	Animación Imprimir	Cambia Escala	
Gráfico sector Sección Circunf. MN = 3 Z = 30 Escala 2 :1				Zoom

Menu Càlculos: Càlcul bruñidos

Menú Calculos donde es posible un cálculo para determinar el diámetro de rodeado de un engranaje Menú Calculos donde es posible un cálculo para determinar el diámetro de la rodadura de un engranaje construido para la laminación.

El programa calcula exactamente el área del compartimiento y el diente (obtenido para la generación y no por aproximación), a continuación, calcula el diámetro en el que el volumen de la parte superior del diente completo se corresponde con el volumen de huecos en la parte inferior del compartimiento.

Cálculo bruñido	
Exportación Resultados Imprimir	
Los datos de laminación :	
El área total del diente El área total del compartimiento	31,6967 31,3904
Diámetro de prelaminado Área superior del diente mm ^ 2 Área de vacìa inferior mm ^ 2	89,488 11,9152 11,683
Los datos se refiere al diámetro de la pre-rolling	
Rodando diámetro de paso (= Diámetro de laminación inicial) Diámetro exterior Diámetro interno Módulo Paso circular Espesor del diente circular = vacia espesor de galeteado Addendum rodillos Dedendum rodillos Radio de rodillos Ángulo de presión	89,488 96 82,5 2,9829 9,3712 4,8668 3,494 3,256 0,75 20 (20°0'0")